knitr::opts_chunk$set(message = FALSE, warning = FALSE, comment = NA,
fig.width = 6.25, fig.height = 5)
library(ANCOMBC)
library(tidyverse)
Sparse Estimation of Correlations among Microbiomes (SECOM) (Lin, Eggesbø, and Peddada 2022) is a methodology that aims to detect both linear and nonlinear relationships between a pair of taxa within an ecosystem (e.g., gut) or across ecosystems (e.g., gut and tongue). SECOM corrects both sample-specific and taxon-specific biases and obtains a consistent estimator for the correlation matrix of microbial absolute abundances while maintaining the underlying true sparsity. For more details, please refer to the SECOM paper.
Download package.
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("ANCOMBC")
Load the package.
The HITChip Atlas dataset contains genus-level microbiota profiling with HITChip for 1006 western adults with no reported health complications, reported in (Lahti et al. 2014). The dataset is available via the microbiome R package (Lahti et al. 2017) in phyloseq (McMurdie and Holmes 2013) format.
data(atlas1006, package = "microbiome")
# Subset to baseline
pseq = phyloseq::subset_samples(atlas1006, time == 0)
# Re-code the bmi group
meta_data = microbiome::meta(pseq)
meta_data$bmi = recode(meta_data$bmi_group,
obese = "obese",
severeobese = "obese",
morbidobese = "obese")
# Note that by default, levels of a categorical variable in R are sorted
# alphabetically. In this case, the reference level for `bmi` will be
# `lean`. To manually change the reference level, for instance, setting `obese`
# as the reference level, use:
meta_data$bmi = factor(meta_data$bmi, levels = c("obese", "overweight", "lean"))
# You can verify the change by checking:
# levels(meta_data$bmi)
# Create the region variable
meta_data$region = recode(as.character(meta_data$nationality),
Scandinavia = "NE", UKIE = "NE", SouthEurope = "SE",
CentralEurope = "CE", EasternEurope = "EE",
.missing = "unknown")
phyloseq::sample_data(pseq) = meta_data
# Subset to lean, overweight, and obese subjects
pseq = phyloseq::subset_samples(pseq, bmi %in% c("lean", "overweight", "obese"))
# Discard "EE" as it contains only 1 subject
# Discard subjects with missing values of region
pseq = phyloseq::subset_samples(pseq, ! region %in% c("EE", "unknown"))
print(pseq)
phyloseq-class experiment-level object
otu_table() OTU Table: [ 130 taxa and 873 samples ]
sample_data() Sample Data: [ 873 samples by 12 sample variables ]
tax_table() Taxonomy Table: [ 130 taxa by 3 taxonomic ranks ]
phyloseq
objectset.seed(123)
# Linear relationships
res_linear = secom_linear(data = list(pseq), taxa_are_rows = TRUE,
tax_level = "Phylum",
aggregate_data = NULL, meta_data = NULL, pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), method = "pearson",
soft = FALSE, thresh_len = 20, n_cv = 10,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
# Nonlinear relationships
res_dist = secom_dist(data = list(pseq), taxa_are_rows = TRUE,
tax_level = "Phylum",
aggregate_data = NULL, meta_data = NULL, pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), R = 1000,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
Sparsity can be increased by adjusting the L1 penalty parameters in alpha_grid
.
set.seed(123)
# Linear relationships
res_linear2 = secom_linear(data = list(pseq), taxa_are_rows = TRUE,
tax_level = "Phylum",
aggregate_data = NULL, meta_data = NULL, pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), method = "pearson",
soft = FALSE, alpha_grid = 0.1,
thresh_len = 20, n_cv = 10,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
corr_linear = res_linear$corr_th
cooccur_linear = res_linear$mat_cooccur
# Filter by co-occurrence
overlap = 10
corr_linear[cooccur_linear < overlap] = 0
df_linear = data.frame(get_upper_tri(corr_linear)) %>%
rownames_to_column("var1") %>%
pivot_longer(cols = -var1, names_to = "var2", values_to = "value") %>%
filter(!is.na(value)) %>%
mutate(value = round(value, 2))
tax_name = sort(union(df_linear$var1, df_linear$var2))
df_linear$var1 = factor(df_linear$var1, levels = tax_name)
df_linear$var2 = factor(df_linear$var2, levels = tax_name)
heat_linear_th = df_linear %>%
ggplot(aes(var2, var1, fill = value)) +
geom_tile(color = "black") +
scale_fill_gradient2(low = "blue", high = "red", mid = "white", na.value = "grey",
midpoint = 0, limit = c(-1,1), space = "Lab",
name = NULL) +
scale_x_discrete(drop = FALSE) +
scale_y_discrete(drop = FALSE) +
geom_text(aes(var2, var1, label = value), color = "black", size = 4) +
labs(x = NULL, y = NULL, title = "Pearson (Thresholding)") +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1,
face = "italic"),
axis.text.y = element_text(size = 12, face = "italic"),
strip.text.x = element_text(size = 14),
strip.text.y = element_text(size = 14),
legend.text = element_text(size = 12),
plot.title = element_text(hjust = 0.5, size = 15),
panel.grid.major = element_blank(),
axis.ticks = element_blank(),
legend.position = "none") +
coord_fixed()
heat_linear_th
corr_linear = res_linear$corr_fl
cooccur_linear = res_linear$mat_cooccur
# Filter by co-occurrence
overlap = 10
corr_linear[cooccur_linear < overlap] = 0
df_linear = data.frame(get_upper_tri(corr_linear)) %>%
rownames_to_column("var1") %>%
pivot_longer(cols = -var1, names_to = "var2", values_to = "value") %>%
filter(!is.na(value)) %>%
mutate(value = round(value, 2))
tax_name = sort(union(df_linear$var1, df_linear$var2))
df_linear$var1 = factor(df_linear$var1, levels = tax_name)
df_linear$var2 = factor(df_linear$var2, levels = tax_name)
heat_linear_fl = df_linear %>%
ggplot(aes(var2, var1, fill = value)) +
geom_tile(color = "black") +
scale_fill_gradient2(low = "blue", high = "red", mid = "white", na.value = "grey",
midpoint = 0, limit = c(-1,1), space = "Lab",
name = NULL) +
scale_x_discrete(drop = FALSE) +
scale_y_discrete(drop = FALSE) +
geom_text(aes(var2, var1, label = value), color = "black", size = 4) +
labs(x = NULL, y = NULL, title = "Pearson (Filtering)") +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1,
face = "italic"),
axis.text.y = element_text(size = 12, face = "italic"),
strip.text.x = element_text(size = 14),
strip.text.y = element_text(size = 14),
legend.text = element_text(size = 12),
plot.title = element_text(hjust = 0.5, size = 15),
panel.grid.major = element_blank(),
axis.ticks = element_blank(),
legend.position = "none") +
coord_fixed()
heat_linear_fl
corr_dist = res_dist$dcorr_fl
cooccur_dist = res_dist$mat_cooccur
# Filter by co-occurrence
overlap = 10
corr_dist[cooccur_dist < overlap] = 0
df_dist = data.frame(get_upper_tri(corr_dist)) %>%
rownames_to_column("var1") %>%
pivot_longer(cols = -var1, names_to = "var2", values_to = "value") %>%
filter(!is.na(value)) %>%
mutate(value = round(value, 2))
tax_name = sort(union(df_dist$var1, df_dist$var2))
df_dist$var1 = factor(df_dist$var1, levels = tax_name)
df_dist$var2 = factor(df_dist$var2, levels = tax_name)
heat_dist_fl = df_dist %>%
ggplot(aes(var2, var1, fill = value)) +
geom_tile(color = "black") +
scale_fill_gradient2(low = "blue", high = "red", mid = "white", na.value = "grey",
midpoint = 0, limit = c(-1,1), space = "Lab",
name = NULL) +
scale_x_discrete(drop = FALSE) +
scale_y_discrete(drop = FALSE) +
geom_text(aes(var2, var1, label = value), color = "black", size = 4) +
labs(x = NULL, y = NULL, title = "Distance (Filtering)") +
theme_bw() +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1,
face = "italic"),
axis.text.y = element_text(size = 12, face = "italic"),
strip.text.x = element_text(size = 14),
strip.text.y = element_text(size = 14),
legend.text = element_text(size = 12),
plot.title = element_text(hjust = 0.5, size = 15),
panel.grid.major = element_blank(),
axis.ticks = element_blank(),
legend.position = "none") +
coord_fixed()
heat_dist_fl
tse
objectOne can also run SECOM function using the TreeSummarizedExperiment
object.
tse = mia::makeTreeSummarizedExperimentFromPhyloseq(atlas1006)
tse = tse[, tse$time == 0]
tse$bmi = recode(tse$bmi_group,
obese = "obese",
severeobese = "obese",
morbidobese = "obese")
tse = tse[, tse$bmi %in% c("lean", "overweight", "obese")]
tse$bmi = factor(tse$bmi, levels = c("obese", "overweight", "lean"))
tse$region = recode(as.character(tse$nationality),
Scandinavia = "NE", UKIE = "NE", SouthEurope = "SE",
CentralEurope = "CE", EasternEurope = "EE",
.missing = "unknown")
tse = tse[, ! tse$region %in% c("EE", "unknown")]
set.seed(123)
# Linear relationships
res_linear = secom_linear(data = list(tse), taxa_are_rows = TRUE,
assay_name = "counts", tax_level = "Phylum",
aggregate_data = NULL, meta_data = NULL, pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), method = "pearson",
soft = FALSE, thresh_len = 20, n_cv = 10,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
# Nonlinear relationships
res_dist = secom_dist(data = list(tse), taxa_are_rows = TRUE,
assay_name = "counts", tax_level = "Phylum",
aggregate_data = NULL, meta_data = NULL, pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), R = 1000,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
Please ensure that you provide the following: 1) The abundance data at its lowest possible taxonomic level. 2) The aggregated data at the desired taxonomic level; if no aggregation is performed, it can be the same as the original abundance data. 3) The sample metadata.
abundance_data = microbiome::abundances(pseq)
aggregate_data = microbiome::abundances(microbiome::aggregate_taxa(pseq, "Phylum"))
meta_data = microbiome::meta(pseq)
set.seed(123)
# Linear relationships
res_linear = secom_linear(data = list(abundance_data),
taxa_are_rows = TRUE,
aggregate_data = list(aggregate_data),
meta_data = list(meta_data),
pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), method = "pearson",
soft = FALSE, thresh_len = 20, n_cv = 10,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
# Nonlinear relationships
res_dist = secom_dist(data = list(abundance_data),
taxa_are_rows = TRUE,
aggregate_data = list(aggregate_data),
meta_data = list(meta_data),
pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), R = 1000,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
To compute correlations whithin and across different ecosystems, one needs to make sure that there are samples in common across these ecosystems.
# Select subjects from "CE" and "NE"
pseq1 = phyloseq::subset_samples(pseq, region == "CE")
pseq2 = phyloseq::subset_samples(pseq, region == "NE")
phyloseq::sample_names(pseq1) = paste0("Sample-", seq_len(phyloseq::nsamples(pseq1)))
phyloseq::sample_names(pseq2) = paste0("Sample-", seq_len(phyloseq::nsamples(pseq2)))
print(pseq1)
phyloseq-class experiment-level object
otu_table() OTU Table: [ 130 taxa and 578 samples ]
sample_data() Sample Data: [ 578 samples by 12 sample variables ]
tax_table() Taxonomy Table: [ 130 taxa by 3 taxonomic ranks ]
phyloseq-class experiment-level object
otu_table() OTU Table: [ 130 taxa and 181 samples ]
sample_data() Sample Data: [ 181 samples by 12 sample variables ]
tax_table() Taxonomy Table: [ 130 taxa by 3 taxonomic ranks ]
phyloseq
objectset.seed(123)
# Linear relationships
res_linear = secom_linear(data = list(CE = pseq1, NE = pseq2),
taxa_are_rows = TRUE,
tax_level = c("Phylum", "Phylum"),
aggregate_data = NULL, meta_data = NULL, pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), method = "pearson",
soft = FALSE, thresh_len = 20, n_cv = 10,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
# Nonlinear relationships
res_dist = secom_dist(data = list(CE = pseq1, NE = pseq2),
taxa_are_rows = TRUE,
tax_level = c("Phylum", "Phylum"),
aggregate_data = NULL, meta_data = NULL, pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), R = 1000,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
corr_linear = res_linear$corr_th
cooccur_linear = res_linear$mat_cooccur
# Filter by co-occurrence
overlap = 10
corr_linear[cooccur_linear < overlap] = 0
df_linear = data.frame(get_upper_tri(corr_linear)) %>%
rownames_to_column("var1") %>%
pivot_longer(cols = -var1, names_to = "var2", values_to = "value") %>%
filter(!is.na(value)) %>%
mutate(var2 = gsub("\\...", " - ", var2),
value = round(value, 2))
tax_name = sort(union(df_linear$var1, df_linear$var2))
df_linear$var1 = factor(df_linear$var1, levels = tax_name)
df_linear$var2 = factor(df_linear$var2, levels = tax_name)
txt_color = ifelse(grepl("CE", tax_name), "#1B9E77", "#D95F02")
heat_linear_th = df_linear %>%
ggplot(aes(var2, var1, fill = value)) +
geom_tile(color = "black") +
scale_fill_gradient2(low = "blue", high = "red", mid = "white",
na.value = "grey", midpoint = 0, limit = c(-1,1),
space = "Lab", name = NULL) +
scale_x_discrete(drop = FALSE) +
scale_y_discrete(drop = FALSE) +
geom_text(aes(var2, var1, label = value), color = "black", size = 4) +
labs(x = NULL, y = NULL, title = "Pearson (Thresholding)") +
theme_bw() +
geom_vline(xintercept = 6.5, color = "blue", linetype = "dashed") +
geom_hline(yintercept = 6.5, color = "blue", linetype = "dashed") +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1,
face = "italic", color = txt_color),
axis.text.y = element_text(size = 12, face = "italic",
color = txt_color),
strip.text.x = element_text(size = 14),
strip.text.y = element_text(size = 14),
legend.text = element_text(size = 12),
plot.title = element_text(hjust = 0.5, size = 15),
panel.grid.major = element_blank(),
axis.ticks = element_blank(),
legend.position = "none") +
coord_fixed()
heat_linear_th
corr_linear = res_linear$corr_th
cooccur_linear = res_linear$mat_cooccur
# Filter by co-occurrence
overlap = 10
corr_linear[cooccur_linear < overlap] = 0
df_linear = data.frame(get_upper_tri(corr_linear)) %>%
rownames_to_column("var1") %>%
pivot_longer(cols = -var1, names_to = "var2", values_to = "value") %>%
filter(!is.na(value)) %>%
mutate(var2 = gsub("\\...", " - ", var2),
value = round(value, 2))
tax_name = sort(union(df_linear$var1, df_linear$var2))
df_linear$var1 = factor(df_linear$var1, levels = tax_name)
df_linear$var2 = factor(df_linear$var2, levels = tax_name)
txt_color = ifelse(grepl("CE", tax_name), "#1B9E77", "#D95F02")
heat_linear_fl = df_linear %>%
ggplot(aes(var2, var1, fill = value)) +
geom_tile(color = "black") +
scale_fill_gradient2(low = "blue", high = "red", mid = "white",
na.value = "grey", midpoint = 0, limit = c(-1,1),
space = "Lab", name = NULL) +
scale_x_discrete(drop = FALSE) +
scale_y_discrete(drop = FALSE) +
geom_text(aes(var2, var1, label = value), color = "black", size = 4) +
labs(x = NULL, y = NULL, title = "Pearson (Filtering)") +
theme_bw() +
geom_vline(xintercept = 6.5, color = "blue", linetype = "dashed") +
geom_hline(yintercept = 6.5, color = "blue", linetype = "dashed") +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1,
face = "italic", color = txt_color),
axis.text.y = element_text(size = 12, face = "italic",
color = txt_color),
strip.text.x = element_text(size = 14),
strip.text.y = element_text(size = 14),
legend.text = element_text(size = 12),
plot.title = element_text(hjust = 0.5, size = 15),
panel.grid.major = element_blank(),
axis.ticks = element_blank(),
legend.position = "none") +
coord_fixed()
heat_linear_fl
corr_dist = res_dist$dcorr_fl
cooccur_dist = res_dist$mat_cooccur
# Filter by co-occurrence
overlap = 10
corr_dist[cooccur_dist < overlap] = 0
df_dist = data.frame(get_upper_tri(corr_dist)) %>%
rownames_to_column("var1") %>%
pivot_longer(cols = -var1, names_to = "var2", values_to = "value") %>%
filter(!is.na(value)) %>%
mutate(var2 = gsub("\\...", " - ", var2),
value = round(value, 2))
tax_name = sort(union(df_dist$var1, df_dist$var2))
df_dist$var1 = factor(df_dist$var1, levels = tax_name)
df_dist$var2 = factor(df_dist$var2, levels = tax_name)
txt_color = ifelse(grepl("CE", tax_name), "#1B9E77", "#D95F02")
heat_dist_fl = df_dist %>%
ggplot(aes(var2, var1, fill = value)) +
geom_tile(color = "black") +
scale_fill_gradient2(low = "blue", high = "red", mid = "white",
na.value = "grey", midpoint = 0, limit = c(-1,1),
space = "Lab", name = NULL) +
scale_x_discrete(drop = FALSE) +
scale_y_discrete(drop = FALSE) +
geom_text(aes(var2, var1, label = value), color = "black", size = 4) +
labs(x = NULL, y = NULL, title = "Distance (Filtering)") +
theme_bw() +
geom_vline(xintercept = 6.5, color = "blue", linetype = "dashed") +
geom_hline(yintercept = 6.5, color = "blue", linetype = "dashed") +
theme(axis.text.x = element_text(angle = 45, vjust = 1, size = 12, hjust = 1,
face = "italic", color = txt_color),
axis.text.y = element_text(size = 12, face = "italic",
color = txt_color),
strip.text.x = element_text(size = 14),
strip.text.y = element_text(size = 14),
legend.text = element_text(size = 12),
plot.title = element_text(hjust = 0.5, size = 15),
panel.grid.major = element_blank(),
axis.ticks = element_blank(),
legend.position = "none") +
coord_fixed()
heat_dist_fl
tse
objectOne can also run SECOM function using the TreeSummarizedExperiment
object.
# Select subjects from "CE" and "NE"
tse1 = tse[, tse$region == "CE"]
tse2 = tse[, tse$region == "NE"]
# Rename samples to ensure there is an overlap of samples between CE and NE
colnames(tse1) = paste0("Sample-", seq_len(ncol(tse1)))
colnames(tse2) = paste0("Sample-", seq_len(ncol(tse2)))
set.seed(123)
# Linear relationships
res_linear = secom_linear(data = list(CE = tse1, NE = tse2),
taxa_are_rows = TRUE,
assay_name = c("counts", "counts"),
tax_level = c("Phylum", "Phylum"),
aggregate_data = NULL, meta_data = NULL, pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), method = "pearson",
soft = FALSE, thresh_len = 20, n_cv = 10,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
# Nonlinear relationships
res_dist = secom_dist(data = list(CE = tse1, NE = tse2),
taxa_are_rows = TRUE,
assay_name = c("counts", "counts"),
tax_level = c("Phylum", "Phylum"),
aggregate_data = NULL, meta_data = NULL, pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), R = 1000,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
Please ensure that you provide the following: 1) The abundance data at its lowest possible taxonomic level. 2) The aggregated data at the desired taxonomic level; if no aggregation is performed, it can be the same as the original abundance data. 3) The sample metadata.
ce_idx = which(meta_data$region == "CE")
ne_idx = which(meta_data$region == "NE")
abundance_data1 = abundance_data[, ce_idx]
abundance_data2 = abundance_data[, ne_idx]
aggregate_data1 = aggregate_data[, ce_idx]
aggregate_data2 = aggregate_data[, ne_idx]
meta_data1 = meta_data[ce_idx, ]
meta_data2 = meta_data[ne_idx, ]
sample_size1 = ncol(abundance_data1)
sample_size2 = ncol(abundance_data2)
colnames(abundance_data1) = paste0("Sample-", seq_len(sample_size1))
colnames(abundance_data2) = paste0("Sample-", seq_len(sample_size2))
rownames(meta_data1) = paste0("Sample-", seq_len(sample_size1))
rownames(meta_data2) = paste0("Sample-", seq_len(sample_size2))
set.seed(123)
# Linear relationships
res_linear = secom_linear(data = list(CE = abundance_data1, NE = abundance_data2),
taxa_are_rows = TRUE,
aggregate_data = list(aggregate_data1, aggregate_data2),
meta_data = list(meta_data1, meta_data2),
pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), method = "pearson",
soft = FALSE, thresh_len = 20, n_cv = 10,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
# Nonlinear relationships
res_dist = secom_dist(data = list(CE = abundance_data1, NE = abundance_data2),
taxa_are_rows = TRUE,
aggregate_data = list(aggregate_data1, aggregate_data2),
meta_data = list(meta_data1, meta_data2),
pseudo = 0,
prv_cut = 0.5, lib_cut = 1000, corr_cut = 0.5,
wins_quant = c(0.05, 0.95), R = 1000,
thresh_hard = 0.3, max_p = 0.005, n_cl = 2)
R version 4.4.2 (2024-10-31)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS
Matrix products: default
BLAS: /home/biocbuild/bbs-3.20-bioc/R/lib/libRblas.so
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_GB LC_COLLATE=C
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: America/New_York
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] doRNG_1.8.6 rngtools_1.5.2 foreach_1.5.2 DT_0.33
[5] lubridate_1.9.4 forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4
[9] purrr_1.0.2 readr_2.1.5 tidyr_1.3.1 tibble_3.2.1
[13] ggplot2_3.5.1 tidyverse_2.0.0 ANCOMBC_2.8.1
loaded via a namespace (and not attached):
[1] rstudioapi_0.17.1 jsonlite_1.8.9 magrittr_2.0.3
[4] TH.data_1.1-2 farver_2.1.2 nloptr_2.1.1
[7] rmarkdown_2.29 zlibbioc_1.52.0 vctrs_0.6.5
[10] multtest_2.62.0 minqa_1.2.8 base64enc_0.1-3
[13] htmltools_0.5.8.1 energy_1.7-12 haven_2.5.4
[16] cellranger_1.1.0 Rhdf5lib_1.28.0 Formula_1.2-5
[19] rhdf5_2.50.2 sass_0.4.9 bslib_0.8.0
[22] htmlwidgets_1.6.4 plyr_1.8.9 sandwich_3.1-1
[25] rootSolve_1.8.2.4 zoo_1.8-12 cachem_1.1.0
[28] igraph_2.1.3 lifecycle_1.0.4 iterators_1.0.14
[31] pkgconfig_2.0.3 Matrix_1.7-1 R6_2.5.1
[34] fastmap_1.2.0 GenomeInfoDbData_1.2.13 rbibutils_2.3
[37] digest_0.6.37 Exact_3.3 numDeriv_2016.8-1.1
[40] colorspace_2.1-1 S4Vectors_0.44.0 crosstalk_1.2.1
[43] Hmisc_5.2-1 vegan_2.6-8 labeling_0.4.3
[46] timechange_0.3.0 mgcv_1.9-1 httr_1.4.7
[49] compiler_4.4.2 proxy_0.4-27 bit64_4.5.2
[52] withr_3.0.2 doParallel_1.0.17 gsl_2.1-8
[55] htmlTable_2.4.3 backports_1.5.0 MASS_7.3-64
[58] biomformat_1.34.0 permute_0.9-7 gtools_3.9.5
[61] CVXR_1.0-15 gld_2.6.6 tools_4.4.2
[64] foreign_0.8-87 ape_5.8-1 nnet_7.3-20
[67] glue_1.8.0 nlme_3.1-166 rhdf5filters_1.18.0
[70] grid_4.4.2 Rtsne_0.17 checkmate_2.3.2
[73] cluster_2.1.8 reshape2_1.4.4 ade4_1.7-22
[76] generics_0.1.3 microbiome_1.28.0 gtable_0.3.6
[79] tzdb_0.4.0 class_7.3-23 data.table_1.16.4
[82] lmom_3.2 hms_1.1.3 XVector_0.46.0
[85] BiocGenerics_0.52.0 pillar_1.10.1 splines_4.4.2
[88] lattice_0.22-6 survival_3.8-3 gmp_0.7-5
[91] bit_4.5.0.1 tidyselect_1.2.1 Biostrings_2.74.1
[94] knitr_1.49 gridExtra_2.3 phyloseq_1.50.0
[97] IRanges_2.40.1 stats4_4.4.2 xfun_0.50
[100] expm_1.0-0 Biobase_2.66.0 stringi_1.8.4
[103] UCSC.utils_1.2.0 yaml_2.3.10 boot_1.3-31
[106] evaluate_1.0.1 codetools_0.2-20 cli_3.6.3
[109] rpart_4.1.24 DescTools_0.99.58 Rdpack_2.6.2
[112] munsell_0.5.1 jquerylib_0.1.4 Rcpp_1.0.13-1
[115] GenomeInfoDb_1.42.1 readxl_1.4.3 parallel_4.4.2
[118] lme4_1.1-35.5 Rmpfr_1.0-0 mvtnorm_1.3-2
[121] lmerTest_3.1-3 scales_1.3.0 e1071_1.7-16
[124] crayon_1.5.3 rlang_1.1.4 multcomp_1.4-26
Lahti, Leo, Jarkko Salojärvi, Anne Salonen, Marten Scheffer, and Willem M De Vos. 2014. “Tipping Elements in the Human Intestinal Ecosystem.” Nature Communications 5 (1): 1–10.
Lahti, Leo, Sudarshan Shetty, T Blake, J Salojarvi, and others. 2017. “Tools for Microbiome Analysis in R.” Version 1: 10013.
Lin, Huang, Merete Eggesbø, and Shyamal Das Peddada. 2022. “Linear and Nonlinear Correlation Estimators Unveil Undescribed Taxa Interactions in Microbiome Data.” Nature Communications 13 (1): 1–16.
McMurdie, Paul J, and Susan Holmes. 2013. “Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data.” PloS One 8 (4): e61217.