Progenetix is an open data resource that provides curated individual cancer copy number variation (CNV) profiles along with associated metadata sourced from published oncogenomic studies and various data repositories. This vignette provides a comprehensive guide on accessing and utilizing metadata for samples or their corresponding individuals within the Progenetix database.
If your focus lies in cancer cell lines, you can access data from cancercelllines.org by setting the domain
parameter to "https://cancercelllines.org"
in pgxLoader
function. This data repository originates from CNV profiling data of cell lines initially collected as part of Progenetix and currently includes additional types of genomic mutations.
library(pgxRpi)
pgxLoader
functionThis function loads various data from Progenetix
database via the Beacon v2 API with some extensions (BeaconPlus).
The parameters of this function used in this tutorial:
type
: A string specifying output data type. “individuals”, “biosamples”, “analyses”, “filtering_terms”, and “sample_count” are used in this tutorial.filters
: Identifiers used in public repositories, bio-ontology terms, or custom terms such as c(“NCIT:C7376”, “PMID:22824167”). When multiple filters are used, they are combined using AND logic when the parameter type
is “individuals”, “biosamples”, or “analyses”; OR logic when the parameter type
is “sample_count”.individual_id
: Identifiers used in the query database for identifying individuals.biosample_id
: Identifiers used in the query database for identifying biosamples.codematches
: A logical value determining whether to exclude samples from child concepts
of specified filters in the ontology tree. If TRUE, only samples exactly matching the specified filters will be included.
Do not use this parameter when filters
include ontology-irrelevant filters such as PMID and cohort identifiers.
Default is FALSE.limit
: Integer to specify the number of returned profiles. Default is 0 (return all).skip
: Integer to specify the number of skipped profiles. E.g. if skip = 2, limit=500, the first 2*500 =1000 profiles are skipped and the next 500 profiles are returned. Default is NULL (no skip).dataset
: A string specifying the dataset to query from the Beacon response. Default is NULL, which includes results from all datasets.domain
: A string specifying the domain of the query data resource. Default is "http://progenetix.org"
.entry_point
: A string specifying the entry point of the Beacon v2 API. Default is “beacon”, resulting in the endpoint being "http://progenetix.org/beacon"
.Filters are a significant enhancement to the Beacon query API, providing a mechanism for specifying rules to select records based on their field values. To learn more about how to utilize filters in Progenetix, please refer to the documentation.
The following example demonstrates how to access all available filters in Progenetix:
all_filters <- pgxLoader(type="filtering_terms")
head(all_filters)
#> id label scopes type
#> 1 PATO:0020000 genotypic sex NA NA
#> 2 PATO:0020001 male genotypic sex NA NA
#> 3 PATO:0020002 female genotypic sex NA NA
#> 4 EDAM:operation_3227 EDAM:operation_3227 NA NA
#> 5 EDAM:operation_3961 EDAM:operation_3961 NA NA
#> 6 labelSeg-based calibration labelSeg-based calibration NA NA
You can also query filters available in other resources via the Beacon v2 API by setting the domain
and entry_point
parameters accordingly.
The following query retrieves information about all retinoblastoma samples in Progenetix, utilizing a specific filter based on an NCIt code as a disease identifier.
biosamples <- pgxLoader(type="biosamples", filters = "NCIT:C7541")
# data looks like this
biosamples[1:5,]
#> biosample_id individual_id biosample_status_id biosample_status_label
#> 1 pgxbs-kftvh1n1 pgxind-kftx2vtw EFO:0009656 neoplastic sample
#> 2 pgxbs-kftvh1n3 pgxind-kftx2vty EFO:0009656 neoplastic sample
#> 3 pgxbs-kftvh1n4 pgxind-kftx2vu0 EFO:0009656 neoplastic sample
#> 4 pgxbs-kftvh1n6 pgxind-kftx2vu2 EFO:0009656 neoplastic sample
#> 5 pgxbs-kftvh1n8 pgxind-kftx2vu4 EFO:0009656 neoplastic sample
#> sample_origin_type_id sample_origin_type_label histological_diagnosis_id
#> 1 OBI:0001479 specimen from organism NCIT:C7541
#> 2 OBI:0001479 specimen from organism NCIT:C7541
#> 3 OBI:0001479 specimen from organism NCIT:C7541
#> 4 OBI:0001479 specimen from organism NCIT:C7541
#> 5 OBI:0001479 specimen from organism NCIT:C7541
#> histological_diagnosis_label sampled_tissue_id sampled_tissue_label
#> 1 Retinoblastoma UBERON:0000966 retina
#> 2 Retinoblastoma UBERON:0000966 retina
#> 3 Retinoblastoma UBERON:0000966 retina
#> 4 Retinoblastoma UBERON:0000966 retina
#> 5 Retinoblastoma UBERON:0000966 retina
#> pathological_stage_id pathological_stage_label tnm_id tnm_label
#> 1 NCIT:C92207 Stage Unknown NA NA
#> 2 NCIT:C92207 Stage Unknown NA NA
#> 3 NCIT:C92207 Stage Unknown NA NA
#> 4 NCIT:C92207 Stage Unknown NA NA
#> 5 NCIT:C92207 Stage Unknown NA NA
#> tumor_grade_id tumor_grade_label age_iso info notes
#> 1 NA NA <NA> NA Retinoblastoma
#> 2 NA NA <NA> NA Retinoblastoma
#> 3 NA NA <NA> NA Retinoblastoma
#> 4 NA NA <NA> NA Retinoblastoma
#> 5 NA NA <NA> NA Retinoblastoma
#> icdo_morphology_id icdo_morphology_label icdo_topography_id
#> 1 pgx:icdom-95103 Retinoblastoma, NOS pgx:icdot-C69.2
#> 2 pgx:icdom-95103 Retinoblastoma, NOS pgx:icdot-C69.2
#> 3 pgx:icdom-95103 Retinoblastoma, NOS pgx:icdot-C69.2
#> 4 pgx:icdom-95103 Retinoblastoma, NOS pgx:icdot-C69.2
#> 5 pgx:icdom-95103 Retinoblastoma, NOS pgx:icdot-C69.2
#> icdo_topography_label pubmed_id cellosaurus_id cbioportal_id
#> 1 Retina PMID:15834944 <NA> <NA>
#> 2 Retina PMID:15834944 <NA> <NA>
#> 3 Retina PMID:15834944 <NA> <NA>
#> 4 Retina PMID:15834944 <NA> <NA>
#> 5 Retina PMID:15834944 <NA> <NA>
#> tcga_project_id analysis_info_experiment_id analysis_info_series_id
#> 1 NA <NA> <NA>
#> 2 NA <NA> <NA>
#> 3 NA <NA> <NA>
#> 4 NA <NA> <NA>
#> 5 NA <NA> <NA>
#> analysis_info_platform_id cohort_ids geoprov_city
#> 1 <NA> pgx:cohort-2021progenetix Heidelberg
#> 2 <NA> pgx:cohort-2021progenetix Heidelberg
#> 3 <NA> pgx:cohort-2021progenetix Heidelberg
#> 4 <NA> pgx:cohort-2021progenetix Heidelberg
#> 5 <NA> pgx:cohort-2021progenetix Heidelberg
#> geoprov_country geoprov_iso_alpha3 geoprov_long_latitude
#> 1 Germany DEU 49.41
#> 2 Germany DEU 49.41
#> 3 Germany DEU 49.41
#> 4 Germany DEU 49.41
#> 5 Germany DEU 49.41
#> geoprov_long_longitude updated
#> 1 8.69 2020-09-10 17:44:29.148000
#> 2 8.69 2020-09-10 17:44:29.150000
#> 3 8.69 2020-09-10 17:44:29.151000
#> 4 8.69 2020-09-10 17:44:29.152000
#> 5 8.69 2020-09-10 17:44:29.154000
The data contains many columns representing different aspects of sample information.
In Progenetix, biosample id and individual id serve as unique identifiers for biosamples and the corresponding individuals. You can obtain these IDs through metadata search with filters as described above, or through website interface query.
biosamples_2 <- pgxLoader(type="biosamples", biosample_id = "pgxbs-kftvki7h",individual_id = "pgxind-kftx6ltu")
biosamples_2
#> biosample_id individual_id biosample_status_id biosample_status_label
#> 1 pgxbs-kftvki7h pgxind-kftx6ltd EFO:0009656 neoplastic sample
#> 2 pgxbs-kftvki7v pgxind-kftx6ltu EFO:0009656 neoplastic sample
#> sample_origin_type_id sample_origin_type_label histological_diagnosis_id
#> 1 OBI:0001479 specimen from organism NCIT:C3512
#> 2 OBI:0001479 specimen from organism NCIT:C3512
#> histological_diagnosis_label sampled_tissue_id sampled_tissue_label
#> 1 Lung Adenocarcinoma UBERON:0002048 lung
#> 2 Lung Adenocarcinoma UBERON:0002048 lung
#> pathological_stage_id pathological_stage_label
#> 1 NCIT:C27976 Stage Ib
#> 2 NCIT:C27977 Stage IIIa
#> tnm_id
#> 1 NCIT:C48706,NCIT:C48714,NCIT:C48724
#> 2 NCIT:C48706,NCIT:C48714,NCIT:C48728
#> tnm_label tumor_grade_id
#> 1 N1 Stage Finding,N3 Stage Finding,T2 Stage Finding NA
#> 2 N1 Stage Finding,N3 Stage Finding,T3 Stage Finding NA
#> tumor_grade_label age_iso info notes icdo_morphology_id
#> 1 NA P56Y NA adenocarcinoma [lung] pgx:icdom-81403
#> 2 NA P75Y NA adenocarcinoma [lung] pgx:icdom-81403
#> icdo_morphology_label icdo_topography_id icdo_topography_label pubmed_id
#> 1 Adenocarcinoma, NOS pgx:icdot-C34.9 Lung, NOS PMID:19607727
#> 2 Adenocarcinoma, NOS pgx:icdot-C34.9 Lung, NOS PMID:19607727
#> cellosaurus_id cbioportal_id tcga_project_id analysis_info_experiment_id
#> 1 NA NA NA geo:GSM417055
#> 2 NA NA NA geo:GSM417063
#> analysis_info_series_id analysis_info_platform_id
#> 1 geo:GSE16597 geo:GPL8690
#> 2 geo:GSE16597 geo:GPL8690
#> cohort_ids
#> 1 pgx:cohort-arraymap,pgx:cohort-2021progenetix,pgx:cohort-carriocordo2021heterogeneity
#> 2 pgx:cohort-arraymap,pgx:cohort-2021progenetix
#> geoprov_city geoprov_country geoprov_iso_alpha3
#> 1 New York City United States of America USA
#> 2 New York City United States of America USA
#> geoprov_long_latitude geoprov_long_longitude updated
#> 1 40.71 -74.01 2020-09-10 17:46:45.105000
#> 2 40.71 -74.01 2020-09-10 17:46:45.115000
It’s also possible to query by a combination of filters, biosample id, and individual id.
By default, it returns all related samples (limit=0). You can access a subset of them
via the parameter limit
and skip
. For example, if you want to access the first 10 samples
, you can set limit
= 10, skip
= 0.
biosamples_3 <- pgxLoader(type="biosamples", filters = "NCIT:C7541",skip=0, limit = 10)
# Dimension: Number of samples * features
print(dim(biosamples))
#> [1] 256 37
print(dim(biosamples_3))
#> [1] 10 37
codematches
useSome filters, such as NCIt codes, are hierarchical. As a result, retrieved samples may include not only the specified filters but also their child terms.
unique(biosamples$histological_diagnosis_id)
#> [1] "NCIT:C7541" "NCIT:C8714" "NCIT:C8713"
Setting codematches
as TRUE allows this function to only return biosamples that exactly match the specified filter, excluding child terms.
biosamples_4 <- pgxLoader(type="biosamples", filters = "NCIT:C7541",codematches = TRUE)
unique(biosamples_4$histological_diagnosis_id)
#> [1] "NCIT:C7541"
The number of samples in specific filters can be queried as follows:
pgxLoader(type="sample_count",filters = "NCIT:C7541")
#> filters label total_count exact_match_count
#> 1 NCIT:C7541 Retinoblastoma 256 215
If you want to query details of individuals (e.g. clinical data) where the samples
of interest come from, set the parameter type
to “individuals” and follow the same steps as above.
individuals <- pgxLoader(type="individuals",individual_id = "pgxind-kftx26ml",filters="NCIT:C7541")
# data looks like this
tail(individuals,2)
#> individual_id sex_id sex_label age_iso histological_diagnosis_id
#> 254 pgxind-m3io67j5 NCIT:C16576 female <NA> NCIT:C7541
#> 255 pgxind-kftx26ml NCIT:C20197 male <NA> NCIT:C3493
#> histological_diagnosis_label followup_time followup_state_id
#> 254 Retinoblastoma <NA> EFO:0030039
#> 255 Squamous Cell Lung Carcinoma EFO:0030039
#> followup_state_label diseases_notes info_legacy_ids
#> 254 no followup status <NA> <NA>
#> 255 no followup status <NA> PGX_IND_AdSqLu-bjo-01
#> updated info_provenance info
#> 254 2024-11-19T03:41:20.977857 <NA> NA
#> 255 2018-09-26 09:50:52.800000 <NA> NA
If you want to know more details about data analyses, set the parameter type
to “analyses”.
The other steps are the same, except the parameter codematches
is not available because
analyses data do not include filter information, even though it can be searched by filters.
analyses <- pgxLoader(type="analyses",biosample_id = c("pgxbs-kftvik5i","pgxbs-kftvik96"))
analyses
#> analysis_id biosample_id individual_id analysis_operation_id
#> 1 pgxcs-kftw8qme pgxbs-kftvik5i pgxind-kftx4963 EDAM:operation_3961
#> 2 pgxcs-kftw8rrh pgxbs-kftvik96 pgxind-kftx49ao EDAM:operation_3961
#> analysis_operation_label experiment_id series_id calling_pipeline
#> 1 Copy number variation detection geo:GSM115217 geo:GSE5051 progenetix
#> 2 Copy number variation detection geo:GSM120460 geo:GSE5359 progenetix
#> platform_id platform_label
#> 1 geo:GPL2826 VUMC MACF human 30K oligo v31
#> 2 geo:GPL3960 MPIMG Homo sapiens 44K aCGH3_MPIMG_BERLIN
#> updated
#> 1 2024-11-20T07:24:51.839782
#> 2 2024-11-20T07:24:53.496612
Suppose you want to investigate whether there are survival differences associated with a particular disease, for example, between younger and older patients, or based on other variables. You can query and visualize the relevant information using the pgxMetaplot
function.
pgxMetaplot
functionThis function generates a survival plot using metadata of individuals obtained by the pgxLoader
function.
The parameters of this function:
data
: The data frame returned by the pgxLoader
function, containing survival data for individuals. The survival state is represented by Experimental Factor Ontology in the “followup_state_id” column, and the survival time is represented in ISO 8601 duration format in the “followup_time” column.group_id
: A string specifying which column is used for grouping in the Kaplan-Meier plot.condition
: A string for splitting individuals into younger and older groups, following the ISO 8601 duration format. Only used if group_id
is “age_iso”.return_data
: A logical value determining whether to return the metadata used for plotting. Default is FALSE....
: Other parameters relevant to KM plot. These include pval
, pval.coord
, pval.method
, conf.int
, linetype
, and palette
(see ggsurvplot function from survminer package)# query metadata of individuals with lung adenocarcinoma
luad_inds <- pgxLoader(type="individuals",filters="NCIT:C3512")
# use 70 years old as the splitting condition
pgxMetaplot(data=luad_inds, group_id="age_iso", condition="P70Y", pval=TRUE)
It’s noted that not all individuals have available survival data. If you set return_data
to TRUE,
the function will return the metadata of individuals used for the plot.
#> R Under development (unstable) (2024-10-21 r87258)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#>
#> Matrix products: default
#> BLAS: /home/biocbuild/bbs-3.21-bioc/R/lib/libRblas.so
#> LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.12.0
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_GB LC_COLLATE=C
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> time zone: America/New_York
#> tzcode source: system (glibc)
#>
#> attached base packages:
#> [1] stats graphics grDevices utils datasets methods base
#>
#> other attached packages:
#> [1] pgxRpi_1.3.2 BiocStyle_2.35.0
#>
#> loaded via a namespace (and not attached):
#> [1] gtable_0.3.6 xfun_0.50 bslib_0.8.0
#> [4] ggplot2_3.5.1 rstatix_0.7.2 lattice_0.22-6
#> [7] vctrs_0.6.5 tools_4.5.0 generics_0.1.3
#> [10] curl_6.1.0 tibble_3.2.1 pkgconfig_2.0.3
#> [13] Matrix_1.7-1 data.table_1.16.4 lifecycle_1.0.4
#> [16] compiler_4.5.0 farver_2.1.2 munsell_0.5.1
#> [19] tinytex_0.54 carData_3.0-5 htmltools_0.5.8.1
#> [22] sass_0.4.9 yaml_2.3.10 Formula_1.2-5
#> [25] pillar_1.10.1 car_3.1-3 ggpubr_0.6.0
#> [28] jquerylib_0.1.4 tidyr_1.3.1 cachem_1.1.0
#> [31] survminer_0.5.0 magick_2.8.5 abind_1.4-8
#> [34] km.ci_0.5-6 tidyselect_1.2.1 digest_0.6.37
#> [37] dplyr_1.1.4 purrr_1.0.2 bookdown_0.42
#> [40] labeling_0.4.3 splines_4.5.0 fastmap_1.2.0
#> [43] grid_4.5.0 colorspace_2.1-1 cli_3.6.3
#> [46] magrittr_2.0.3 survival_3.8-3 broom_1.0.7
#> [49] withr_3.0.2 scales_1.3.0 backports_1.5.0
#> [52] lubridate_1.9.4 timechange_0.3.0 rmarkdown_2.29
#> [55] httr_1.4.7 gridExtra_2.3 ggsignif_0.6.4
#> [58] zoo_1.8-12 evaluate_1.0.3 knitr_1.49
#> [61] KMsurv_0.1-5 survMisc_0.5.6 rlang_1.1.5
#> [64] Rcpp_1.0.14 xtable_1.8-4 glue_1.8.0
#> [67] BiocManager_1.30.25 attempt_0.3.1 jsonlite_1.8.9
#> [70] R6_2.5.1