Reverse engineering transcriptional regula-
tory networks
from gene expression microarray data us-

ing gpgraph
Robert Castelo' and Alberto Roverato?

March 12, 2025

1. Universitat Pompeu Fabra, Barcelona, Spain.

2. Universita di Bologna, Bologna, Italy.

1 Introduction

This vignette describes how to use the package gpgraph in order to reverse engineer a tran-
scriptional regulatory network from a particular gene expression microarray data set of Es-
cherichia coli (E. coli). Concretely, the data corresponds to n = 43 experiments of various
mutants under oxygen deprivation (Covert et al., 2004). The mutants were designed to
monitor the response from E. coli during an oxygen shift in order to target the a priori most
relevant part of the transcriptional netwok by using six strains with knockouts of the following
key transcriptional regulators in the oxygen response: AarcA, AappY, Afnr, AoxyR, AsoxS
and the double knockout AarcAAfnr. To get started, load the following packages:

library(Biobase)
library(annotate)
library(genefilter)
library(org.EcK12.eg.db)
library(graph)
library(qpgraph)

vV V.V V V V

Within the gpgraph package there is a data file called EcoliOxygen in which we will find the
following objects stored:

> data(EcoliOxygen)

> 1s()
[1] "annot" “chr"
[3] "cross" "eqtlnet.q0"
[5] "eqtlnet.qg@.fdr" "eqtlnet.q0.fdr.nrr"
[7]1 "eqtlnet.q@.fdr.nrr.sel" "eqtls"
[9] "filtered.regulon6.1" "gds680.eset"
[11] "genome" tit
[13] "j" “map"
[15] "pMap" "param"
[17] "sim.eqtl" "subset.filtered.regulon6.1"

[19] "subset.gds680.eset"

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph

Reverse engineering networks using gpgraph

where filtered.regulon6.1l contains a subset of the E. coli transcriptional network from
RegulonDB 6.1 (Gama-Castro et al., 2008) obtained through the filtering steps described in
(Castelo and Roverato, 2009) and gds680.eset is an ExpressionSet object with the n = 43
microarray experiments of Covert et al. (2004) described before. These experiments provide
expression profiles for p = 4205 genes derived from the original data set downloaded from
the Gene Expression Omnibus (Barrett et al., 2007) with accession GDS680 by applying the
filtering described in (Castelo and Roverato, 2009). You can see a summary of the data
contained in this object by simply typing its name on the R-shell:

> gds680. eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 4205 features, 43 samples
element names: exprs

protocolData: none

phenoData
rowNames: GSM18235 GSM18236 ... GSM18289 (43 total)
varLabels: Strain GrowthProtocol GenotypeVariation Description
varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
pubMedIds: 15129285

Annotation: org.EcK12.eg.db

where the usual probeset identifiers in the featureNames slot have been already replaced by
the corresponding Entrez IDs according to the filtering steps taken in (Castelo and Roverato,
2009).

2 Preprocessing steps

In order to keep time and space requirements of the calculations at a manageable level for
a vignette, we will use a subset of these data. Concretely, we will consider first those genes
forming part in RegulonDB of the regulatory modules of the five knocked-out transcription
factors and select the 100 genes with largest variability measured by the interquartile range
(IQR). In the gpgraph package the filtered RegulonDB data is stored in the form of a data
frame where each row corresponds to a transcriptional regulatory relationship, the first two
columns contain Blattner IDs of the transcription factor (TF) and target (TG) genes, respec-
tively, and the following two correspond to the same genes but specified by Entrez IDs. The
fifth column contains the direction of the regulation according to RegulonDB and this is how
the first rows look like:

> head(filtered.regulon6.1)

BLID_TF BLID_TG EgID_TF EgID_TG Direction

1 Db0464 b0463 945516 945112 =
2 b0464 b0462 945516 945108 =
5 b2213 b4187 946710 948710

6 b2213 Db2068 946710 947371 +
7 b2213 b2212 946710 946708 +-
8 b4116 b4117 948627 948638 +

We select the rows of filtered.regulon6.1 that correspond to the subnetwork of the 5
knocked-out TFs as follows. First, obtain the Entrez IDs of these genes from their symbols:

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph

Reverse engineering networks using gpgraph

knockoutsyms <- c("arcA","appY","oxyR", "soxS","fnr")
rmap <- revmap(getAnnMap("SYMBOL", "org.EcK12.eg.db"))
knockoutEgIDs <- unlist(mget(knockoutsyms, rmap))
knockoutEgIDs

vV V V V

arcA appY oxyR SOXS fnr
"948874" "948797" "948462" "948567" "945908"

Next, get all transcriptional regulatory relationships from these TFs and obtain the subset of
non-redundant genes involved in this subnetwork:

> mt <- match(filtered.regulon6.1[,"EgID_TF"], knockoutEgIDs)
> cat("These 5 TFs are involved in",sum(!is.na(mt)),"TF-TG interactions\n")

These 5 TFs are involved in 462 TF-TG interactions

> genes02net <- as.character(unique(as.vector(
+ as.matrix(filtered.regulon6.1[!is.na(mt),c("EgID_TF",6"EgID_TG")]))))
> cat("There are", length(genes02net), "different genes in this subnetwork\n")

There are 378 different genes in this subnetwork

and, finally, select the 100 most variable genes by using the IQR:

> IQRs <- apply(exprs(gds680.eset[genes02net,]), 1, IQR)
> largestIQRgenes02net <- names(sort(IQRs,decreasing=TRUE)[1:100])

Using these genes we create a new ExpressionSet object, which we shall call subset.gds680.eset
by subsetting directly from gds680.eset:

> dim(gds680.eset)

Features Samples
4205 43

> subset.gds680.eset <- gds680.eset[largestIQRgenes02net, |
> dim(subset.gds680.eset)

Features Samples
100 43

> subset.gds680.eset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 100 features, 43 samples
element names: exprs

protocolData: none

phenoData
rowNames: GSM18235 GSM18236 ... GSM18289 (43 total)
varLabels: Strain GrowthProtocol GenotypeVariation Description
varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
pubMedIds: 15129285

Annotation: org.EcK12.eg.db

http://bioconductor.org/packages/qpgraph

Reverse engineering networks using gpgraph

In order to compare later our results against the transcriptional network from RegulonDB we
will extract the subnetwork that involves exclusively these selected 100 genes as follows. First
extract the corresponding rows:

mtTF <- match(filtered.regulon6.1[,"EgID TF"], largestIQRgenes02net)

mtTG <- match(filtered.regulon6.1[,"EgID_TG"],largestIQRgenes02net)

cat(sprintf("The 100 genes are involved in %d RegulonDB interactions\n",
sum(!is.na(mtTF) & !is.na(mtTG))))

+ V VvV V

The 100 genes are involved in 128 RegulonDB interactions

> subset.filtered.regulon6.1 <- filtered.regulon6.1[!is.na(mtTF) & !is.na(mtTG),]

Next, we need to build an incidence matrix of this subset of interactions, which we shall
call subset.filtered.regulon6.1.I, in order to ease posterior comparisons with reverse-
engineered networks and for this purpose we should first map the Entrez IDs to the indexed
position they have within the ExpressionSet object and then build the incidence matrix:

TFi <- match(subset.filtered.regulon6.1[,"EgID_TF"],

featureNames (subset.gds680.eset))
TGi <- match(subset.filtered.regulon6.1[,"EgID_TG"],

featureNames (subset.gds680.eset))
subset.filtered.regulon6.1 <- cbind(subset.filtered.regulon6.l1,

1dXx_TF=TFi, idx_TG=TGi)
p <- dim(subset.gds680.eset)["Features"]
subset.filtered.regulon6.1.I <- matrix(FALSE, nrow=p, ncol=p)
rownames (subset. filtered.regulon6.1.I) <- featureNames(subset.gds680.eset)
colnames(subset. filtered.regulon6.1.1I) <- featureNames(subset.gds680.eset)
1dxTFTG <- as.matrix(subset.filtered.regulon6.1[,c("idx_TF","idx_TG")])
subset.filtered.regulon6.1.I[idxTFTG] <-
subset.filtered.regulon6.1.I[cbind(idxTFTG[,2],1idxTFTG[,1])] <- TRUE

+ VV V V V V 4+ V + V + V

3 Reverse engineer a transcriptional regulatory net-
work

We are set to reverse engineer a transcriptional regulatory network from the subset of the
oxygen deprivation microarray data formed by the selected 100 genes and we will use three
methods: 1. the estimation of Pearson correlation coefficients (PCCs); 2. the estimation of
average non-rejection rates (avgNRRs); and, as a baseline comparison, 3. the assignment of
random correlations drawn from a uniform distribution between -1 and +1 to every pair of
genes. We can estimate PCCs for all gene pairs with the function gpPCC from the gpgraph
package as follows:

> pcc.estimates <- qpPCC(subset.gds680.eset)

which returns a list with two members, one called R with the PCCs and another called P with
the corresponding two-sided P-values for the null hypothesis of zero correlation. Let's take a
look to the distribution of absolute PCCs between all possible TF-TG pairs in this subset of
100 genes:

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph

Reverse engineering networks using gpgraph

largestIQRgenes02net_i <- match(largestIQRgenes02net,

featureNames (subset.gds680.eset))
largestIQRgenes02netTFs <- largestIQRgenes02net[!is.na(

match(largestIQRgenes02net, filtered.regulon6.1[,"EgID TF"]))]
largestIQRgenes02netTFs_i <- match(largestIQRgenes02netTFs,
featureNames (subset.gds680.eset))
TFsbyTGs <- as.matrix(expand.grid(largestIQRgenes02netTFs_1i,
setdiff(largestIQRgenes02net_i, largestIQRgenes02netTFs_1i)))

TFsbyTGs <- rbind(TFsbyTGs,t(combn(largestIQRgenes02netTFs_1i, 2)))
summary(abs(pcc.estimates$R[TFsbyTGs]))

vV V. .+ V + V + V + V

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0001023 0.3026803 0.5145512 0.5036736 0.7181577 0.9862190

Note that they are distributed almost uniformly at random throughout the entire range [0,1]
while if we look at the distribution of the PCC estimates for the entire RegulonDB data, i.e.,
for all possible TF-TG pairs among the initial p = 4205 genes:

> regulonDBgenes <- as.character(unique(c(filtered.regulon6.1[, "EgID_TF"],

+ filtered.regulon6.1[, "EgID_TG"])))
> cat(sprintf("The RegulonDB transcriptional network involves %d genes",
+ length(regulonDBgenes)))

The RegulonDB transcriptional network involves 1428 genes

> pcc.allRegulonDB.estimates <- qpPCC(gds680.eset[regulonDBgenes,])

> allTFs_1i <- match(unique(filtered.regulon6.1[, "EgID_TF"]), regulonDBgenes)

> allTFsbyTGs <- as.matrix(expand.grid(allTFs_1i,

+ setdiff(1:1length(regulonDBgenes), allTFs_1i)))
> allTFsbyTGs <- rbind(allTFsbyTGs,t(combn(allTFs_i, 2)))

> summary(abs(pcc.allRegulonDB.estimates$R[allTFsbyTGs]))

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.390e-06 1.038e-01 2.204e-01 2.555e-01 3.739e-01 9.862e-01

we see that, opposite to what happens in the subset of 100 genes, most of the absolute
PCC values for all (i.e., present and absent from RegulonDB) TF-TG pairs are small. The
high level of correlation among most of the 100 genes is probably due to the coordinated
transcriptional program to which all these genes belong to, since they form part of some of
the key regulatory modules in the response to oxygen deprivation. Recall that five TFs in
these regulatory modules were knocked-out in the assayed experimental conditions and we
selected the most variable 100 genes. Concretely, among the five TFs the following ones were
finally included in these 100 most variable genes:

> mt <- match(knockoutEgIDs, largestIQRgenes02net)
> unlist(mget(largestIQRgenes02net[mt[!is.na(mt)]],org.EcK12.egSYMBOL))

948874 948797 948567 945908
IlarCAll llaplel “SOXS” ll.fnrll

If we look now to the distribution of absolute PCC values for only those TF-TG pairs that
are present in the subset of RegulonDB involved in the 100 genes:

http://bioconductor.org/packages/qpgraph

Reverse engineering networks using gpgraph

> maskRequlonTFTG <- subset.filtered.regulon6.1.I & upper.tri(subset.filtered.regulon6.1.1)
> summary(abs(pcc.estimates$R[maskRegulonTFTG]))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0001023 0.1561148 0.2896006 0.3303612 0.4573992 0.9862190

they show much lower values (50% < 0.3) and thus we can expect that a substantial number
of TF-TG pairs absent from RegulonDB but with strong PCC values will sneak in as false
positives in our assessment below of the estimation of PCCs as a reverse engineering method.
If we look at the distribution of the PCC values from the RegulonDB interactions separetely
by each of the regulatory modules within these 100 genes (i.e., by each of the TFs) we can
see that fnr is one of the responsibles for having low PCCs in a large fraction of this subset
of RegulonDB. We have used the R code below to produce Figure 1 where this is shown.

par(mar=c(5,4,5,2))
pccsbyTF <- list()
for (TFi in subset.filtered.regulon6.1[,"idx_TF"])
pccsbyTF[[featureNames (subset.gds680.eset) [TFi]]] <-
abs(pcc.estimates$R[TFi, subset.filtered.regulon6.1.I[TFi,]])

bp <- boxplot(pccsbyTF,names=sprintf("%s",mget(names(pccsbyTF),org.EcK12.egSYMBOL)),

ylab="Pearson correlation coefficient (PCC)",

main=paste("Distribution of PCCs in each RegulonDB",

"regulatory module within the 100 genes data set", sep="\n"))
nint <- sprintf("(%d)",sapply(names(pccsbyTF), function(x)
sum(subset. filtered.regulon6.1.1[x,])))

mtext(nint, at=seq(bp$n), line=+2, side=1)
mtext("Transcription factor (# RegulonDB interactions)", side=1, line=+4)

vV V. + V + + + V + + V V V

As observed by Covert et al. (2004) when fnr becomes active under anaerobic conditions its
mRNA level is significantly reduced and we hypothesize that this fact probably leads to weak
correlations of the expression level with its target genes.

Distribution of PCCs in each RegulonDB
regulatory module within the 100 genes data set

)
S 4
e °© -
= | s |
Q ! o
£ o]
o (=}
<1
S
c
S
8 < :
2 o 7 H
<]
3
<
S
2 o
S S 1
& -
o | -
S
T T T T T
appY arcA betl for soxS
®) (57)) (61))

Transcription factor (# RegulonDB interactions)

Figure 1: Distribution of Pearson correlation coefficients (PCCs) calculated from the Covert et al. (2004)
oxygen deprivation data between genes forming RegulonDB interactions. Distributed values are shown sep-
arately by each regulatory module defined as a transcription factor (TF) and its set of target genes.

http://bioconductor.org/packages/qpgraph

Reverse engineering networks using gpgraph

Now we will show how can we use gp-graphs to tackle such a challenging situation. We
should start by estimating avgNRRs with the function gpAvgNrr() but before we do that,
and for the sake of reproducibility of the results of this vignette, we should take into account
that because the non-rejection rate is estimated by a random sampling procedure (see Castelo
and Roverato, 2006), its value may vary slightly from run to run and thus edges with very
similar avgNRR values may alternate their positions when ranking them and thus show up
differently in different qp-graphs obtained from different runs if, within the ranking, they lie
at the boundary of the precision threshold we may be using later. For this reason, and in
order to let the reader reproduce exactly the results contained in this vignette, we will specify
a particular seed to the random number generator as follows:

> set.seed(123)

Moreover, in this exercise, we are only interested in TF-TG relationships and thus we will
speed-up the calculations by restricting the formation of gene pairs with the parameters
pairup.i and pairup.j in the following way:

> avgnrr.estimates <- qpAvgNrr(subset.gds680.eset,
+ pairup.i=largestIQRgenes02netTFs,
+ pairup.j=largestIQRgenes02net, verbose=FALSE)

The function gpAvgNrr() uses by default four equidistant g-values along the available range
and returns a matrix with the estimates for all gene pairs except when, as in this case, we
restrict the genes allowed to pair with each other. In order to assess the accuracy of the PCC
and gp-graph methods we will use the transcriptional regulatory relationships in the subset
of RegulonDB that we selected before and calculate precision-recall curves (Fawcett, 2006)
using the gpPrecisionRecall function from the gpgraph package.

We have to be careful with the fact that while we calculated avgNRRs only for TF-TG pairs,
the matrix pcc.estimates$R contains PCC values for all pairs of genes and thus in order
to obtain comparable precision-recall curves we will have to inform gpPrecisionRecall of
the pairs that should be considered when giving it the matrix of PCC values. This is not
necessary with avgNRRs as the matrix has NA values on the cells corresponding to pairs where
no calculation was performed (on the pairs of non-transcription factor genes).

> pcc.prerec <- gpPrecisionRecall(abs(pcc.estimates$R), subset.filtered.regulon6.1.1,

+ decreasing=TRUE, pairup.i=largestIQRgenes02netTFs,
+ pairup.j=largestIQRgenes02net,
+ recallSteps=c(seq(0,0.1,0.01),seq(0.2,1,0.1)))

Note also that, opposite to PCCs, in avgNRR estimates the value indicating the smallest
strength of the interaction is 1 instead of 0 and therefore we should set decreasing=FALSE:

> avgnrr.prerec <- gpPrecisionRecall(avgnrr.estimates, subset.filtered.regulon6.1.1,
+ decreasing=FALSE,
+ recallSteps=c(seq(0,0.1,0.01),seq(0.2,1,0.1)))

Finally, in order to have the assignment of random correlations as a baseline comparison we
should do the following:

> set.seed(123)

> rndcor <- gpUnifRndAssociation(100, featureNames(subset.gds680.eset))

> random.prerec <- gpPrecisionRecall(abs(rndcor), subset.filtered.regulon6.1.1I,

+ decreasing=TRUE, pairup.i=largestIQRgenes02netTFs,

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph

Reverse engineering networks using gpgraph

pairup.j=largestIQRgenes02net,
+ recallSteps=c(seq(0,0.1,0.01),seq(0.2,1,0.1)))

where again we have specified a seed for the random number generator in order to enforce
reproducing the same random correlations each time we run this vignette.

A way to quantitatively compare these three precision-recall curves is to calculate the area
under these curves where the larger it is, the more accurate the method is:

> f <- approxfun(pcc.prerec[,c("Recall","Precision")])
area <- integrate(f,0,1)$value

f <- approxfun(avgnrr.prerec[,c("Recall", "Precision")])
area <- cbind(area, integrate(f,0,1)$value)

f <- approxfun(random.prerec[,c("Recall", "Precision")])
area <- cbind(area, integrate(f,0,1)$value)
colnames(area) <- c("PCC", "avgNRR", "Random")
rownames(area) <- "AreaPrecisionRecall"
printCoefmat(area)

V V.V V V V V V

PCC avgNRR Random
AreaPrecisionRecall 0.13747 0.26436 0.189

From these values we may conclude that, for these data (n = 43 microarray experiments on
p = 100 genes among which 7 are TFs, and with 128 transcriptional regulatory relationships
from RegulonDB for comparison), the random method outperforms the usage of PCCs but
it performs worse than the gp-graph method with avgNRRs which, therefore, constitutes
the best solution among these three approaches. While it may sound a bit counter-intuitive
that the assignment of a random correlation provides better results than using PCCs, the
reason for this lies in the fact that with these data we have 7 x 93 +f(;) = 672 possible
TF-TG interactions out of which 128 from RegulonDB form our gold-standard. This yields a
bottomline precision of (128/672) x 100 ~ 19% which is quickly attained by drawing random
correlations. However, we saw before that absolute PCCs of the RegulonDB interactions
forming our gold-standard are most of them distributed under 0.5 and this yields, for this
particular data set, a performance that is worse than random at regions of high-precision.
We may see this situation depicted in Figure 2 whose left panel has been produced with the
following R code:

> par(mai=c(.5,.5,1,.5),mar=c(5,4,7,2)+0.1)

> plot(avgnrr.prerec[,c(1,2)], type="b", lty=1, pch=19, cex=0.65, lwd=4, col="red",
+ xlim=c(0,0.1), ylim=c(0,1), axes=FALSE,

+ xlab="Recall (% RegulonDB interactions)", ylab="Precision (%)")

> axis(1, at=seq(0,1,0.01), labels=seq(0,100,1))

> axis(2, at=seq(0,1,0.10), labels=seq(0,100,10))

> axis(3, at=avgnrr.prerec[,"Recall"],

+ labels=round(avgnrr.prerec[,"Recall"]+«dim(subset.filtered.regulon6.1)[1],

+ digits=0))

> title(main="Precision-recall comparison", line=+5)

> lines(pcc.prerec[,c(1,2)], type="b", lty=1, pch=22, cex=0.65, lwd=4, col="blue")
> lines(random.prerec[,c(1,2)], type="1", lty=2, lwd=4, col="black")

> mtext("Recall (# RegulonDB interactions)", 3, line=+3)

> legend(0.06, 1.0, c("gp-graph","PCC", "Random"), col=c("red","blue", "black"),

+ lty=c(1,1,2), pch=c(19,22,-1), lwd=3, bg="white",pt.cex=0.85)

http://bioconductor.org/packages/qpgraph

Reverse engineering networks using gpgraph

par(mai=c(.5,.5,1,.5),mar=c(5,4,7,2)+0.1)

plot(avgnrr.prerec[,c(1,2)], type="b", lty=1, pch=19, cex=0.65, lwd=4, col="red",
xlim=c(0,1), ylim=c(0,1), axes=FALSE,
xlab="Recall (% RegulonDB interactions)", ylab="Precision (%)")

axis(1l, at=seq(0,1,0.10), labels=seq(0,100,10))

axis(2, at=seq(0,1,0.10), labels=seq(0,100,10))

axis(3, at=avgnrr.prerec[,"Recall"],
labels=round(avgnrr.prerec[, "Recall"]xdim(subset.filtered.regulon6.1)[1],

digits=0))

title(main="Precision-recall comparison", line=+5)

lines(pcc.prerec[,c(1,2)], type="b", lty=1, pch=22, cex=0.65, lwd=4, col="blue")

lines(random.prerec[,c(1,2)], type="1", lty=2, lwd=4, col="black")

mtext("Recall (# RegulonDB interactions)", 3, line=+3)

legend(0.6, 1.0, c("gp-graph","PCC","Random"), col=c("red", "blue", "black"),

lty=c(1,1,2), pch=c(19,22,-1), lwd=3, bg="white",pt.cex=0.85)

+ VvV VvV VYV + + V VYV 4+ + V V

Precision-recall comparison Precision—recall comparison
Recall (# RegulonDB interactions) Recall (# RegulonDB interactions)
0 1 3 4 5 6 8 9 10 12 13 08 26 38 51 64 77 90 102 115 128
[T | L [[T [1 1 1 [1]
1 1= o—o Tt
o —— qgp-graph o —e— qp-graph
S \ —s— PCC S —a— PCC
2 4 \ — = Random 2 — = Random
o | . o | Je
R \ ~e _ %
= S~ = ']
£87 1 N\ g g
§ o s o
2 v \ °. a2 B 7 .
S =]
g g4 \ g 9
a o—0 [—_—
9 ~ g
® - - i 3
o - - - - o I\~ .
B -— e - « -~ _0_—_‘4-0-—','-0—.
a—
o o a0
1 S ——a—
e —g—t— g =0 = —— 0 — 0 i
o - o -
T 1
0o 1 2 3 4 5 6 7 8 9 10 0O 10 20 30 40 50 60 70 80 90 100
Recall (% RegulonDB interactions) Recall (% RegulonDB interactions)

(a) (b)

Figure 2: Comparison of precision-recall curves for various reverse-engineering methods with panel (a)
showing a high-precision recall region of [0,0.1] and panel(b) showing the entire recall range.

The final step in this analysis is to get a transcriptional regulatory network from a gp-graph
using avgNNRs and, if possible, obtain estimates of partial correlation coefficients (PAC)
for the interactions. A gp-graph can be obtained by thresholding on the avgNRRs using
the function gpGraph. When, as in our case now, we have a gold-standard network like
RegulonDB, a sensible strategy to decide on a particular threshold is to derive it from a
nominal precision level with respect to the gold-standard network. We can do this with the
function gpPRscoreThreshold which reads the output of gpPrecisionRecall and takes a
desired precision or recall level. We will use it with a nominal precision level of 50%:

> thr <- gpPRscoreThreshold(avgnrr.prerec, level=0.5, recall.level=FALSE, max.score=0)
> thr

ScoreThreshold
0.5065827

In order to manipulate the final reverse engineered transcriptional regulatory network from this
50%-precision gp-graph we will obtain a graphNEL object through the gpGraph() function:

http://bioconductor.org/packages/qpgraph

Reverse engineering networks using gpgraph

> g <- gpGraph(avgnrr.estimates, threshold=thr, return.type="graphNEL")
> g

A graphNEL graph with undirected edges
Number of Nodes = 100
Number of Edges = 20

We are going to estimate now the corresponding PACs for the interactions. First, we should
see if this is at all possible by calculating the size of the largest clique in this undirected graph
with the gpCliqueNumber function from the gpgraph package:

> gpCliqueNumber(g, verbose=FALSE)
[1] 2

The maximum clique size (aka clique number) is smaller than the number of observations in
the data (n = 43) and therefore we can go on with the PAC estimation (see Lauritzen, 1996,
for further details on this):

> pac.estimates <- gpPAC(subset.gds680.eset, g, verbose=FALSE)

Before making a graphical representation of the transcriptional regulatory network we have
in g we would like to make a text-based summary of the interactions, more amenable for an
occasional automatic processing of them outside R, including their presence or absence of
RegulonDB and corresponding avgNRRs, PACs and PCCs. We start by building a matrix of
the directed edges,

> edL <- edges(g)[names(edges(g))[unlist(lapply(edges(g), length)) > 0]]
> edM <- matrix(unlist(sapply(names(edL),

+ function(x) t(cbind(x,edL[[x]])),USE.NAMES=FALSE)),

+ ncol=2, byrow=TRUE)

and continue by gathering all the necessary information on these edges,

edSymbols <- cbind(unlist(mget(edM[,1], org.EcK12.egSYMBOL)),
unlist(mget(edM[,2], org.EcK12.egSYMBOL)))
1dxTF <- match(edM[,1], featureNames(subset.gds680.eset))
1dxTG <- match(edM[,2], featureNames(subset.gds680.eset))
nrrs <- avgnrr.estimates[cbind(idxTF, idxTG)]
pacs.rho <- pac.estimates$R[cbind(idxTF, 1dxTG)]
pacs.pva <- pac.estimates$P[cbind(idxTF, 1dxTG)]
pccs.rho <- pcc.estimates$R[cbind(idxTF, 1dxTG)]
pccs.pva <- pcc.estimates$P[cbind(idxTF, 1dxTG)]
idxRegDB <- apply(edM, 1, function(x) {
regdbmask <-
apply(
cbind(match(subset. filtered.regulon6.1[,"EqgID_TF"],x[1]),
match(subset. filtered.regulon6.1[,"EgID TG"],x[2])),
1, function(y) sum(!is.na(y))) == 2 ;
if (sum(regdbmask) > 0)
(1:dim(subset.filtered.regulon6.1)[1])[regdbmask]
else
NA

+ + + + + 4+ + + + VVVVVVVV+V

http://bioconductor.org/packages/qpgraph
http://bioconductor.org/packages/qpgraph

Reverse engineering networks using gpgraph

+)

> 1sinRegDB <- matrix(c("present", "absent"),

+ nrow=2, ncol=length(idxRegDB))[t(cbind(!is.na(idxRegDB),
+ is.na(idxRegDB)))]

to end up creating a data frame that includes all the information,

> txregnet <- data.frame(RegulonDB=isinRegDB,

+ RegDBdir=subset. filtered.regulon6.1[idxRegDB, "Direction"],
+ AvgNRR=round(nrrs,digits=2),

+ PCC. rho=round(pccs.rho,digits=2),

+ PCC.pva=format(pccs.pva,scientific=TRUE,digits=3),

+ PAC. rho=round(pacs.rho,digits=2),

+ PAC.pva=format (pacs.pva,scientific=TRUE,digits=3))

> rownames (txregnet) <- paste(edSymbols[,1],edSymbols[,2],sep=" -> ")

and which allows us to display the transcriptional regulatory network as a list of edges ordering
them, for instance, by the avgNRR from the stronger (0.0) to the weaker (1.0) support for
the presence of that interaction in the network:

> txregnet[sort(txregnet[["AvgNRR"]], index.return=TRUE)$ix,]
RegulonDB RegDBdir AvgNRR PCC.rho PCC.pva PAC.rho PAC.pva

betB -> betI absent <NA> 0.09 0.99 0.00e+00 0.87 4.13e-06
betI -> betB present - 0.09 0.99 0.00e+00 0.87 4.13e-06
grcA -> fnr absent <NA> 0.11 0.66 1.39e-06 0.61 2.98e-04
fnr -> grcA present +- 0.11 0.66 1.39e-06 0.61 2.98e-04
appC -> appY absent <NA> 0.12 0.84 1.21e-12 0.50 2.35e-05
appY -> appC present + 0.12 0.84 1.21e-12 0.50 2.35e-05
arcA -> fadB present - 0.15 -0.90 5.23e-16 -0.74 1.22e-05
fadB -> arcA absent <NA> 0.15 -0.90 5.23e-16 -0.74 1.22e-05
fnr -> flu absent <NA> 0.19 0.32 3.90e-02 0.18 4.82e-02
flu -> fnr absent <NA> 0.19 0.32 3.90e-02 0.18 4.82e-02
flu -> appY absent <NA> 0.24 0.66 1.48e-06 0.27 3.04e-04
appY -> flu absent <NA> 0.24 0.66 1.48e-06 0.27 3.04e-04
appB -> appY absent <NA> 0.32 0.81 2.98e-11 0.45 3.45e-05
appY -> appB present + 0.32 0.81 2.98e-11 0.45 3.45e-05
arcA -> lpd present - 0.36 -0.64 4.58e-06 -0.17 4.33e-04
caiF -> narG absent <NA> 0.36 0.81 6.56e-11 0.57 3.84e-05
narG -> caiF absent <NA> 0.36 0.81 6.56e-11 0.57 3.84e-05
lpd -> arcA absent <NA> 0.36 -0.64 4.58e-06 -0.17 4.33e-04
caiF -> dmsC absent <NA> 0.42 0.86 1.63e-13 0.70 1.92e-05
dmsC -> caiF absent <NA> 0.42 0.86 1.63e-13 0.70 1.92e-05
hyaF -> appY absent <NA> 0.44 0.75 6.18e-09 0.36 8.12e-05
appY -> hyaF present + 0.44 0.75 6.18e-09 0.36 8.12e-05
hyaD -> appY absent <NA> 0.47 0.71 1.00e-07 0.32 1.48e-04
sucC -> betI absent <NA> 0.47 0.92 0.00e+00 0.35 8.62e-06
appY -> hyaD present + 0.47 0.71 1.00e-07 0.32 1.48e-04
betI -> sucC absent <NA> 0.47 0.92 0.00e+00 0.35 8.62e-06
arcA -> glcB present - 0.48 -0.78 4.83e-10 -0.38 5.18e-05
1ldR -> glcB absent <NA> 0.48 0.75 8.14e-09 0.57 8.57e-05
lpd -> betI absent <NA> 0.48 0.89 3.11e-15 0.26 1.38e-05

http://bioconductor.org/packages/qpgraph

Reverse engineering networks using gpgraph

betI -> lpd absent <NA> 0.48 0.89 3.11e-15 0.26 1.38e-05
glcB -> arcA absent <NA> 0.48 -0.78 4.83e-10 -0.38 5.18e-05
glcB -> 11dR absent <NA> 0.48 0.75 8.14e-09 0.57 8.57e-05
gadA -> appY absent <NA> 0.50 0.43 4.47e-03 0.15 1.03e-02
fnr -> sufC absent <NA> 0.50 -0.43 4.45e-03 -0.32 1.03e-02
sufC -> fnr absent <NA> 0.50 -0.43 4.45e-03 -0.32 1.03e-02
appY -> gadA absent <NA> 0.50 0.43 4.47e-03 0.15 1.03e-02
fdhF -> betI absent <NA> 0.51 -0.73 2.57e-08 -0.16 1.09e-04
hyaE -> appY absent <NA> 0.51 0.71 8.68e-08 0.32 1.43e-04
appY -> hyaE present + 0.51 0.71 8.68e-08 0.32 1.43e-04
betI -> fdhF absent <NA> 0.51 -0.73 2.57e-08 -0.16 1.09e-04

We can plot the network with the function gpPlotNetwork as follows and obtain the result
shown in Figure 3.

> gpPlotNetwork(g, pairup.i=largestIQRgenes02netTFs, pairup.j=largestIQRgenes02net,
+ annotation="org.EcK12.eg.db")

*\@

Figure 3: Reverse-engineered transcriptional network using a qp-graph at a nominal 50% precision.

4 Session Information

> tolatex(sessionInfo())
= R Under development (unstable) (2025-03-02 r87868), x86_64-apple-darwin20
= Locale: C/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
= Time zone: America/New_York
= TZcode source: internal

= Running under: mac0S Monterey 12.7.6

http://bioconductor.org/packages/qpgraph

Reverse engineering networks using gpgraph

= Matrix products: default

= BLAS:
/Library/Frameworks/R. framework/Versions/4.5-x86_64/Resources/lib/1libRblas.0.dylib

= LAPACK:
/Library/Frameworks/R. framework/Versions/4.5-x86_64/Resources/lib/1ibRlapack.dylib
: LAPACK version3.12.0

= Base packages: base, datasets, grDevices, graphics, grid, methods, stats, stats4, utils

= Other packages: AnnotationDbi 1.69.0, Biobase 2.67.0, BiocGenerics 0.53.6,
GenomelnfoDb 1.43.4, IRanges 2.41.3, Rgraphviz 2.51.4, S4Vectors 0.45.4,
XML 3.99-0.18, annotate 1.85.0, genefilter 1.89.0, generics 0.1.3, graph 1.85.2,
org.EcK12.eg.db 3.21.0, gqpgraph 2.41.1, qtl 1.70

= Loaded via a namespace (and not attached): BioclO 1.17.1, BiocManager 1.30.25,
BiocParallel 1.41.2, BiocStyle 2.35.0, Biostrings 2.75.4, DBI 1.2.3,
DelayedArray 0.33.6, GenomelnfoDbData 1.2.14, GenomicAlignments 1.43.0,
GenomicFeatures 1.59.1, GenomicRanges 1.59.1, KEGGREST 1.47.0, Matrix 1.7-3,
MatrixGenerics 1.19.1, R6 2.6.1, RCurl 1.98-1.16, RSQLite 2.3.9, Rsamtools 2.23.1,
S4Arrays 1.7.3, SparseArray 1.7.6, SummarizedExperiment 1.37.0, UCSC.utils 1.3.1,
XVector 0.47.2, abind 1.4-8, bit 4.6.0, bit64 4.6.0-1, bitops 1.0-9, blob 1.2.4,
cachem 1.1.0, cli 3.6.4, codetools 0.2-20, compiler 4.5.0, crayon 1.5.3, curl 6.2.1,
digest 0.6.37, evaluate 1.0.3, fastmap 1.2.0, htmltools 0.5.8.1, httr 1.4.7,
jsonlite 1.9.1, knitr 1.49, lattice 0.22-6, matrixStats 1.5.0, memoise 2.0.1,
mvtnorm 1.3-3, parallel 4.5.0, pkgconfig 2.0.3, png 0.1-8, restfulr 0.0.15,
rison 0.2.23, rlang 1.1.5, rmarkdown 2.29, rtracklayer 1.67.1, splines 4.5.0,
survival 3.8-3, tools 4.5.0, vctrs 0.6.5, xfun 0.51, xtable 1.8-4, yaml 2.3.10

References

Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., Kim,
l. F., Soboleva, A., Tomashevsky, M., and Edgar, R. (2007). NCBI GEO: mining tens of
millions of expression profiles—database and tools update. Nucleic Acids Res, 35(Database
issue):D760-5.

Castelo, R. and Roverato, A. (2006). A robust procedure for gaussian graphical model search
from microarray data with p larger than n. J Mach Learn Res, 7:2621-2650.

Castelo, R. and Roverato, A. (2009). Reverse engineering molecular regulatory networks from
microarray data with qp-graphs. J Comput Biol, 16(2):213-27.

Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J., and Palsson, B. O. (2004).
Integrating high-throughput and computational data elucidates bacterial networks. Nature,
429(6987):92-96.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recogn Lett, 27:861-874.

Gama-Castro, S., Jimenez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Penaloza-
Spinola, M. I., Contreras-Moreira, B., Segura-Salazar, J., Muniz-Rascado, L., Martinez-
Flores, I., Salgado, H., Bonavides-Martinez, C., Abreu-Goodger, C., Rodriguez-Penagos,
C., Miranda-Rios, J., Morett, E., Merino, E., Huerta, A. M., Trevino-Quintanilla, L., and

13

http://bioconductor.org/packages/qpgraph

Reverse engineering networks using gpgraph

Collado-Vides, J. (2008). RegulonDB (version 6.0): gene regulation model of Escherichia
coli K-12 beyond transcription, active (experimental) annotated promoters and textpresso
navigation. Nucleic Acids Res, 36(Database issue):D120-4.

Lauritzen, S. (1996). Graphical models. Oxford University Press.

14

http://bioconductor.org/packages/qpgraph

	1 Introduction
	2 Preprocessing steps
	3 Reverse engineer a transcriptional regulatory network
	4 Session Information

